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Abstract
We derive P(M, tm), the joint probability density of the maximum M and the
time tm at which this maximum is achieved, for a class of constrained Brownian
motions. In particular, we provide explicit results for excursions, meanders
and reflected bridges associated with Brownian motion. By subsequently
integrating over M , the marginal density P(tm) is obtained in each case in the
form of a doubly infinite series. For the excursion and meander, we analyse
the moments and asymptotic limits of P(tm) in some detail and show that the
theoretical results are in excellent accord with numerical simulations. Our
primary method of derivation is based on a path-integral technique; however,
an alternative approach is also outlined which is founded on certain ‘agreement
formulae’ that are encountered more generally in probabilistic studies of
Brownian motion processes.

PACS numbers: 02.50.−r, 05.40.−a, 05.40.Jc

1. Introduction

Brownian motion (the Wiener process) is the most important and widely studied continuous-
time stochastic process and, as such, has generated a huge literature. Despite this attention,
however, it is still possible to identify problems relating to Brownian motion which are
relatively easy to pose but not that well understood. Such problems are often directly linked to
areas of application in the physical or social sciences, wherein their solution is of immediate
relevance.

Within this overall context, there has been a recent renewal of interest in studying
functionals of constrained Brownian motion. This has been driven by questions which arise
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quite naturally in, e.g., financial transactions [1], data storage in computer science [2], queueing
dynamics [3], interface fluctuations [4] and extreme statistics in time series analysis [5]. These
have proven to be of interest to physicists and mathematicians alike; for an overview, see [6–8].
The issue we seek to address in this paper is motivated by general considerations rather than
any one specific topic and finds its roots in the following classic problem. Given a Brownian
motion, x(τ), in the interval [0, t], subject to x(0) = 0 but otherwise unconstrained, at what
time, tm, does x(τ) reach its maximum value, M? More precisely, what is the probability
density, P(tm), associated with tm?

The answer to this is well known; P(tm) = 1
π
t
−1/2
m (t − tm)−1/2, or equivalently the

cumulative distribution is given by Pr(tm � x) = 2
π

sin−1[
√

x/t]. This is Lévy’s famous
‘arcsine law’ [9]. It is somewhat counterintuitive; the density has a minimum at the midpoint
tm = t/2 and peaks at the end points tm = 0 and tm = t , showing that Brownian motion is
inherently ‘stiff’ [10, 11]. The corresponding result for a Brownian bridge (which has the
additional constraint that x(t) = 0) is also known, namely P(tm) = 1/t , which one may call
the ‘uniform law’ [10]. Recently, an expression for P(tm) for a Brownian motion up to its
first-passage time was also presented [12], adding to the results on first-passage Brownian
functionals given in [13, 14]. The main focus of the present paper is to derive P(tm) for three
other cases: (i) a Brownian excursion, (ii) a Brownian meander and (iii) a reflected Brownian
bridge. We include the latter since it appears naturally in the context of certain probability
laws related to the excursion and the meander (see section 4).

A Brownian excursion in the interval [0, t] is defined as a Brownian motion, x(τ),
constrained so that x(0) = 0, x(t) = 0 with x(τ) > 0 for 0 < τ < t . A Brownian meander
in the interval [0, t] is the same except there is no constraint on the value of x(t), other than it
is positive. A reflected Brownian bridge in the interval [0, t] is defined as the absolute value
|x(τ)| of a Brownian motion constrained such that x(0) = 0 and x(t) = 0. For the excursion,
on basic dimensional grounds one has that P(tm) = t−1f (tm/t), where the function f (x)

satisfies the normalization condition
∫ 1

0 f (x) dx = 1. Similarly, in relation to the meander
and reflected bridge one can define corresponding functions g(x) and h(x) which are likewise
normalized. It follows that the interval length t is only a trivial scaling factor and one can
interpret the scaling functions f (x), g(x) and h(x) as being the relevant probability densities
for the respective motions in the interval [0, 1]. Our primary aim is to compute these functions
explicitly. For convenience, we summarize the main findings here;

f (x) = 3
∞∑

m,n=1

(−1)m+n m2n2

[n2x + m2(1 − x)]5/2
Excursion (1)

g(x) = 2
∞∑

m=0,n=1

(−1)n+1 n2

[n2x + (2m + 1)2(1 − x)]3/2
Meander (2)

h(x) = 2
∞∑

m,n=0

(−1)m+n (2m + 1)(2n + 1)

[(2n + 1)2x + (2m + 1)2(1 − x)]3/2
Reflected bridge. (3)

The primary method we employ to derive these results is based on a path-integral technique
(in essence, the Feynman–Kac formula). In section 2 we describe how the approach leads
naturally to expressions for the joint probability density P(M, tm). By subsequently integrating
over M one can then obtain expressions for the marginal densities P(tm), and hence obtain
the functions f (x), g(x) and h(x) defined above. In section 3 we concentrate on analysing
f (x) and g(x) in terms of their moments and asymptotic tails, and show that the results are
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Figure 1. Schematic showing a typical Brownian path x(τ) constrained so that x(0) = x0,
x(t) = xt and x(tm) = M − ε, with 0 < x(τ) < M almost surely for 0 � τ � t .

in excellent accord with numerical simulations. In section 4 we return to the results obtained
for P(M, tm) to show that they may also be obtained by considering certain probabilistic laws
known as ‘agreement formulae’. These laws are associated with random variables which have
been defined and analysed by probability theorists in the study of Brownian motion processes.
Finally, in section 5, overall conclusions are drawn.

2. Deriving the probability densities

The basic approach outlined in this section has been described in detail in [6, 7], so here
we present a simplified overview. At a fundamental level, the processes being studied are
represented by the Langevin equation dx(τ)/dτ = ξ(τ ), where ξ(τ ) is a Gaussian white noise
source with correlator 〈ξ(τ )ξ(τ ′)〉 = δ(τ − τ ′). For the purpose of simulation this means that
the realization of sample paths can be achieved through a suitable limiting process of a discrete
random walk (see the following section). From a theoretical perspective, a powerful tool in
many instances is the use of Fokker–Planck equations, but it is not always easy to handle
the given constraints on the process in question using this approach [6, 7]. The path-integral
technique is a powerful alternative to the Fokker–Planck method. The central idea is that the
probability measure P [x(τ)] associated with an unconstrained Brownian path x(τ) over the
time interval 0 � τ � t satisfies

P [x(τ)] ∝ exp

[
−1

2

∫ t

0

(
dx

dτ

)2

dτ

]
. (4)

From this observation one can systematically construct solutions to the problems of interest
by interpreting the ‘Lagrangian path-integral’ formalism of (4) in terms of an equivalent
‘Hamiltonian propagator’ formalism within which the constraints on the motion may be
accommodated quite naturally. We proceed on a case-by-case basis.

2.1. Brownian excursion

Let us first consider the case of the Brownian excursion. With reference to figure 1, we are
interested in those paths x(τ) which have x(0) = 0 and x(t) = 0 with x(τ) > 0 for 0 < τ < t .

3



J. Phys. A: Math. Theor. 41 (2008) 365005 S N Majumdar et al

Note that a continuous-time Brownian motion, starting at x(0) = 0 at τ = 0, will recross
the origin an infinite number of times in the time interval [0, δ] for all δ > 0 [10]. Hence
it is impossible to maintain the constraint x(τ) > 0 for τ > 0 if we insist that x(0) = 0
from the outset. This problem can be circumvented by the following procedure [6, 7]. We
assume that the process starts at x(0) = x0 > 0, then impose the constraint x(τ) > 0 for
τ > 0 without any problem, and only take the limit x0 → 0 at the appropriate stage in the
calculation. Similarly, we assume the process ends at x(t) = xt > 0, eventually taking the
limit xt → 0. For computational convenience one can set xt = x0.

Next, one considers the time tm at which the excursion reaches its (almost surely unique)
maximum M . Again, we treat this as a limiting process by fixing the value of x(tm) to be M−ε

whilst imposing the constraint that the actual maximum is less than M , with the limit ε → 0
only being taken at the appropriate stage. With these caveats, and with tm and M assumed
fixed, one can decompose a given path x(τ) into a left-hand segment, for which 0 � τ � tm,
and a right-hand segment, for which tm � τ � t , wherein for both 0 < x(τ) < M almost
surely (see figure 1). The statistical weight of, say, the left-hand segment is proportional to
the propagator 〈x0| e−Ĥ tm |M − ε〉, where the Hamiltonian Ĥ = − 1

2
∂2

∂x2 + V (x). The potential
V (x) has infinite barriers at x = 0 and x = M; this ensures that the process is constrained
to satisfy 0 � x(τ) � M for 0 � τ � t . The normalized eigenfunctions of Ĥ are simply

ψn(x) =
√

2
M

sin
(

nπx
M

)
, whilst the corresponding eigenvalues are given by En = n2π2/2M2.

One can easily evaluate the propagator in this eigenbasis

〈x0| e−Ĥ tm |M − ε〉 = 2

M

∞∑
n=1

sin
(nπx0

M

)
sin

(
nπ(M − ε)

M

)
e− n2π2

2M2 tm . (5)

Similarly, the statistical weight of the right-hand segment is proportional to the propagator
〈M − ε| e−Ĥ (t−tm)|x0〉, which may be written down by analogy. With tm and M fixed, the
Markovian nature of the Brownian motion process means that the statistical weight of the
right-hand segment is independent of the statistical weight of the left-hand segment. It follows
that the joint probability density, P(M, tm), after taking the limits ε → 0 and x0 → 0, satisfies

P(M, tm) = A
4π4ε2x2

0

M6

∞∑
m,n=1

(−1)m+nm2n2 e− n2π2

2M2 tm− m2π2

2M2 (t−tm) + · · · (6)

where . . . denotes the higher order terms in ε and x0. The amplitude (i.e. constant of
proportionality) A, which is a function of ε and x0, may be determined by the normalization
condition

∫ ∞
0

∫ t

0 P(M, tm) dtm dM = 1. The integrals are straightforward to evaluate and to
complete the calculation we make use of the following results;

lim
α→−1

∞∑
m,n=1

αm+n m + n

mn
= ln 2, lim

α→−1

∞∑
m,n=1

αm+n 1

m + n
= ln 2 − 1

2
. (7)

These results are simple to derive by appropriately differentiating or integrating the basic
geometric series

∑∞
n=1 αn = α/(1 − α) for |α| < 1. This idea of introducing α and letting

α → −1 is not just a useful computational aid; it is an important regularization procedure
which gives a precise meaning to certain sums which arise in the analysis. With the help of
(7) one therefore finds that, for a Brownian excursion, the joint probability density is given by,

P(M, tm) =
√

2
π9/2t3/2

M6

∞∑
m,n=1

(−1)m+nm2n2 e− n2π2

2M2 tm− m2π2

2M2 (t−tm)
. (8)

We are primarily interested in this paper in the marginal density P(tm). This may
be obtained by integrating (8) over M , i.e. P(tm) = ∫ ∞

0 P(M, tm) dM . Before doing so,
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however, we make a brief detour by considering the other marginal density associated with the
maximum of a Brownian excursion, namely P(M) = ∫ t

0 P(M, tm) dtm. This is well known in
the literature [15–17],

P(M) =
√

2π5/2t3/2 d

dM

{
1

M3

∞∑
n=1

n2 e− n2π2

2M2 t

}
(9)

with moments given by,

〈Mk〉 = k(k − 1)tk/2

2k/2
	

(
k

2

)
ζ(k) (10)

where ζ(k) is the Riemann zeta function. By integrating (8) over tm one should obtain an
expression for P(M) which is equivalent to (9). Interestingly, by doing so one obtains a
representation which is quite different:

P(M) = 23/2π5/2t3/2

M4

∞∑
m,n=1

(−1)m+n m2n2

m2 − n2

[
e− n2π2

2M2 t − e− m2π2

2M2 t
]
. (11)

It is by no means obvious that (9) and (11) are equivalent, but in the appendix we shall prove
that this is the case. It follows that the moments calculated using (11) must agree with (10).
One quickly establishes that 〈M〉 = √

πt/2 and 〈M2〉 = π2t/6, as required, and with a
little more effort one can also verify that 〈M4〉 = π4t2/30. For the third moment, however,
using (11) and comparing with (10) one obtains (when suitably regularized) an unusual and
interesting identity,

lim
α→−1

∞∑
m,n=1

αm+n m2n2

m + n

(
ln m − ln n

m − n

)
= 3ζ(3)

8π2
(12)

where ζ(3) is Apéry’s constant. We have checked this numerically to high precision and it is
correct. We have been unable to find a shorter, more direct proof of (12).

Let us now return to considering the marginal density P(tm) for a Brownian excursion.
By integrating (8) over M one obtains

P(tm) = 3t3/2
∞∑

m,n=1

(−1)m+n m2n2

[n2tm + m2(t − tm)]5/2
≡ 1

t
f

(
tm

t

)
(13)

where the scaling function f (x) is given by

f (x) = 3
∞∑

m,n=1

(−1)m+n m2n2

[n2x + m2(1 − x)]5/2
. (14)

This is our first main result. Specifically, f (x) is the probability density for the time to reach
maximum for a Brownian excursion in the interval [0, 1]. We note that f (x) is invariant under
the interchange x → 1 − x; i.e. f (x) is symmetric about x = 1/2. One may easily check that
(14) is correctly normalized over this interval, i.e.

∫ 1
0 f (x) dx = 1. Thus,∫ 1

0
f (x) dx = 3 lim

α→−1

∞∑
m,n=1

αm+nm2n2
∫ 1

0

dx

[n2x + m2(1 − x)]5/2

= 2 lim
α→−1

∞∑
m,n=1

αm+n m2 + mn + n2

mn(m + n)
= 1 (15)

where we have used the results in (7) when making the final step. In the following section
we will consider the low-order moments and asymptotics of f (x), and also make comparison
with numerical simulations.

5
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2.2. Brownian meander

Turning now to the case of a Brownian meander, it is straightforward to adapt the above
analysis for the excursion and we therefore only present the outline details. The key difference
between the meander and the excursion is that there is no constraint on the final co-ordinate
of the motion, xt , other than 0 � xt � M (see figure 1). Thus one must integrate over this
co-ordinate using the result∫ M

0
sin

(mπxt

M

)
dxt = M

mπ
[1 − (−1)m]. (16)

Proceeding exactly as before one then derives in the limit ε → 0 and x0 → 0

P(M, tm) = B
4π2ε2x0

M4

∞∑
m,n=1

[(−1)m+n − (−1)n]n2 e− n2π2

2M2 tm− m2π2

2M2 (t−tm) + · · · . (17)

Again the unknown amplitude B may be determined by the normalization condition∫ ∞
0

∫ t

0 P(M, tm) dtm dM = 1. A useful result in this regard is

lim
α→−1

∞∑
m,n=1

αn n

m(m + n)
= lim

α→−1

∞∑
m,n=1

αn

[
1

m
− 1

m + n

]
= −1

2
ln 2. (18)

This may be proved by representing the sum in (18) as an integral by first using the identities
m−1 ≡ ∫ ∞

0 e−my dy and (m + n)−1 ≡ ∫ ∞
0 e−(m+n)y dy and then interchanging the order of

summation and integration. The final result for the joint probability density for a Brownian
meander is given by

P(M, tm) =
√

2π5/2t1/2

M4

∞∑
m,n=1

[(−1)m+n − (−1)n]n2 e− n2π2

2M2 tm− m2π2

2M2 (t−tm)
. (19)

From this result, one can obtain in passing an expression for the marginal density P(M) by
integrating over tm

P (M) = 23/2π1/2t1/2

M2

∞∑
m,n=1

[(−1)m+n − (−1)n]
n2

m2 − n2

[
e− n2π2

2M2 t − e− m2π2

2M2 t
]
. (20)

There is a standard, well-known expression for P(M), namely [18, 19],

P(M) = 23/2√πt1/2 d

dM

{
1

M

∞∑
n=0

e− (2n+1)2π2

2M2 t

}
(21)

with moments [20]

〈Mk〉 = k2k/2(1 − 21−k)tk/2	

(
k

2

)
ζ(k). (22)

As before, we prove in the appendix that the two representations (20) and (21) are equivalent,
as indeed they must be. Using (20) one can determine that the second moment is given by
〈M2〉 = π2t/3, which agrees with (22). More interestingly, using (20) to determine the first
moment and comparing with the result given by (22), namely 〈M〉 = √

2πt ln 2, one obtains
the following identity;

lim
α→−1

∞∑
m,n=1

[αm+n − αn]
n2

m + n

(
ln m − ln n

m − n

)
= 1

2
ln 2. (23)

Once more, we have been unable to find a shorter, more direct proof of (23), but again we
have checked it numerically to high precision and are satisfied that it is correct.

6
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Returning to the main theme, to obtain the marginal density P(tm) for a Brownian meander
we integrate (19) over M to give

P(tm) = t1/2
∞∑

m,n=1

[(−1)m+n − (−1)n]
n2

[n2tm + m2(t − tm)]3/2
≡ 1

t
g

(
tm

t

)
(24)

where

g(x) =
∞∑

m,n=1

[(−1)m+n − (−1)n]
n2

[n2x + m2(1 − x)]3/2
. (25)

One can write this in a slightly neater form by noting that only the terms where m is odd
contribute, i.e. (−1)m+n − (−1)n = 0 when m is even. Thus

g(x) = 2
∞∑

m=0,n=1

(−1)n+1 n2

[n2x + (2m + 1)2(1 − x)]3/2
. (26)

This is our second main result. Specifically, g(x) is the probability density for the time to
reach maximum for a Brownian meander in the interval [0, 1]. Again it is useful to check
using (25) that g(x) is correctly normalized;∫ 1

0
g(x) dx = lim

α→−1

∞∑
m,n=1

[αm+n − αn]n2
∫ 1

0

dx

[n2x + m2(1 − x)]3/2

= 2 lim
α→−1

∞∑
m,n=1

[αm+n − αn]
n

m(m + n)
= 1 (27)

where we have used the results in (7) and (18) in the final step. In the following section
we will consider the low-order moments and asymptotics of g(x), together with f (x), with
comparisons made against numerical simulations. It is perhaps worth stressing in advance that,
unlike the function f (x) which is symmetric about x = 1/2, the function g(x) is manifestly
asymmetric; indeed it diverges as x → 1.

2.3. Reflected Brownian bridge

One can easily adapt the above path-integral method to calculate P(M, tm) for other Brownian
motion processes. Anticipating the discussion in section 4, there are good mathematical
reasons for studying the reflected Brownian bridge alongside the excursion and meander. The
only significant modification to the calculation involves considering a Brownian motion x(τ)

which is constrained to lie in the box −M < x(τ) < M for 0 � τ � t . We do not give the
details of the derivation here, but simply present the results. One finds that,

P(M, tm) =
√

2
π5/2t1/2

M4

∞∑
m,n=0

(−1)m+n
(
m + 1

2

)(
n + 1

2

)
e− (n+1/2)2π2

2M2 tm− (m+1/2)2π2

2M2 (t−tm)
. (28)

By integrating (28) over tm one therefore has that

P(M) = 23/2π1/2t1/2

M2

∞∑
m,n=0

(−1)m+n

(
m + 1

2

)(
n + 1

2

)
(
m + 1

2

)2 − (
n + 1

2

)2

[
e− (n+1/2)2π2

2M2 t − e− (m+1/2)2π2

2M2 t
]

(29)

which is equivalent (see the appendix) to the conventional expression [20]

P(M) =
√

2πt
d

dM

{
1

M

∞∑
n=0

e− (2n+1)2π2

8M2 t

}
. (30)

7
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Figure 2. Schematic of the Vervaat construction: the upper diagram depicts a Brownian bridge;
the lower diagram depicts the Brownian excursion constructed from that bridge.

More pertinently, by integrating (28) over M one obtains the marginal density P(tm) =
t−1h(tm/t) where the scaling function h(x) is given by,

h(x) = 2
∞∑

m,n=0

(−1)m+n (2m + 1)(2n + 1)

[(2n + 1)2x + (2m + 1)2(1 − x)]3/2
. (31)

This is our third main result. It is straightforward to check that h(x) is correctly normalized,
i.e.

∫ 1
0 h(x) dx = 1, and to see that h(x) is invariant under the interchange x → 1 − x; i.e.

symmetric about x = 1/2.

3. Analysis and numerical simulations

In this section we concentrate on analysing two of the key results in this paper; the probability
density f (x) for the time to reach maximum for a Brownian excursion in the interval [0, 1],
given by (14), and the probability density g(x) for the time to reach maximum for a Brownian
meander in the interval [0, 1], given by (26). We begin by considering the excursion.

To simulate a Brownian excursion in the interval [0, 1], one starts with an ordinary
Brownian motion, x(τ), represented as the appropriate limit of a discrete random walk. From
this a Brownian bridge may be constructed using the transformation x(τ) → x(τ) − τx(1).
Finally, from this Brownian bridge one can obtain a Brownian excursion using the Vervaat
construction [21]. This is best illustrated graphically. In figure 2 the basic idea becomes clear;

8
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Figure 3. Comparison of simulated results with theoretical predictions for the probability density
function f (x). The inset shows the theoretical curve on a linear scale.

by cutting a given Brownian bridge at its minimum point, and rearranging and translating the
two segments, one can construct a Brownian path with the desired characteristics, namely
x(0) = 0, x(1) = 0 with x(τ) > 0 for 0 < τ < 1. In figure 3 we plot the function
f (x) alongside the results of numerical simulations of the excursion process (based on 107

samples). The results are indistinguishable. We can determine the asymptotic behaviour of
f (x) as x → 0 as follows. First we use the identity

1

a5/2
≡ 1

	
(

5
2

) ∫ ∞

0
y3/2 e−ay dy (32)

to write f (x) as given by (14) in an equivalent form

f (x) = 4√
π

∫ ∞

0
y3/2

{ ∞∑
n=1

(−1)nn2 e−n2xy

}{ ∞∑
m=1

(−1)mm2 e−m2(1−x)y

}
dy. (33)

By such means one achieves a convenient factorization, although it comes at a price in that one
has to carry out at some stage the parametric integration over the dummy variable y. Next, to
study the limit x → 0 we substitute y = z/

√
x in (33) to give

f (x) = 4√
π

1

x5/4

∫ ∞

0
z3/2

{ ∞∑
n=1

(−1)nn2 e−n2√xz

}{ ∞∑
m=1

(−1)mm2 e−m2(1−x)z/
√

x

}
dz. (34)

9
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If we consider the second summation in (34) first, in the limit x → 0 this is dominated by the
m = 1 term, thus,

∞∑
m=1

(−1)mm2 e−m2(1−x)z/
√

x ∼ −e−z/
√

x. (35)

To deal with the first summation in (34) we use a key identity known from the theory of Jacobi
theta functions [22]

1 + 2
∞∑

n=1

(−1)n e−n2z = 2

(
π

z

)1/2 ∞∑
n=0

e−π2(n+1/2)2/z. (36)

Differentiating both sides of (36) with respect to z, replacing z → √
xz and retaining only the

dominant term on the right-hand-side gives the following asymptotic behaviour as x → 0

∞∑
n=1

(−1)nn2 e−n2√xz ∼ − π5/2

4x5/4z5/2
e−π2/(4

√
xz). (37)

This means that by substituting (35) and (37) into (34) one obtains

f (x) ∼ π2

x5/2

∫ ∞

0

1

z
exp

[
− 1√

x

(
π2

4z
+ z

)]
dz. (38)

Using Laplace’s (saddle point) method to approximate this integral as x → 0 one therefore
finds the asymptotic behaviour

f (x) ∼ 21/2 π2

x9/4
e−π/

√
x. (39)

This is also plotted in figure 3, and again the agreement with the numerical simulations is
excellent. By symmetry, the asymptotic behaviour of f (x) as x → 1 is given by (39) with the
replacement x → 1 − x.

One can also consider the moments of f (x). We have calculated the first three moments
explicitly using (14) and obtain

〈x〉 = 1

2
; 〈x2〉 = 15 − π2

18
= 0.285 02 . . . , 〈x3〉 = 1 − π2

12
= 0.177 53 . . . . (40)

The first moment follows on the grounds of symmetry, and the third moment may be deduced
from the first two moments on the grounds of symmetry. From the simulation results we obtain
the numerical estimates: 〈x〉 ≈ 0.500 . . . , 〈x2〉 ≈ 0.285 . . . and 〈x3〉 ≈ 0.177 . . . which are
fully consistent. One can calculate higher order moments in principle but this becomes an
increasingly laborious task.

Turning now to the case of the meander, the simulation approach is slightly different.
Again one starts with an ordinary Brownian motion, x(τ), represented as a discrete random
walk, but this time only those sample paths for which x(τ) > 0 for 0 < τ < 1 are retained;
in the appropriate limit one has a good approximation to sample paths for the meander.
In figure 4 we plot the function g(x) alongside the results of numerical simulations of the
meander process (based on 107 samples). Once again the agreement is excellent. This time,
the asymptotic behaviour as x → 0 is quite different from the behaviour as x → 1, where g(x)

diverges. To investigate these limiting behaviours, we start with (26) and adapt the previous

10
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Figure 4. Comparison of simulated results with theoretical predictions for the probability density
function g(x). The inset shows the theoretical curve on a linear scale.

strategy to first rewrite g(x) in the form

g(x) = 4√
π

∫ ∞

0
y1/2

{ ∞∑
n=1

(−1)n+1n2 e−n2xy

}{ ∞∑
m=0

e−(2m+1)2(1−x)y

}
dy. (41)

To study the limit x → 0 we substitute y = z/
√

x in (41) to give

g(x) = 4√
πx3/4

∫ ∞

0
z1/2

{ ∞∑
n=1

(−1)n+1n2 e−n2√xz

}{ ∞∑
m=0

e−4(m+1/2)2(1−x)z/
√

x

}
dz. (42)

As x → 0, to approximate the first summation in (42) we can use the result (37), whilst for
the second summation in (42) we need retain only the m = 0 term so that

∞∑
m=0

e−4(m+1/2)2(1−x)z/
√

x ∼ e−z/
√

x. (43)

This means that

g(x) ∼ π2

x2

∫ ∞

0

1

z2
exp

[
− 1√

x

(
π2

4z
+ z

)]
dz. (44)

Once again by using Laplace’s method to approximate the integral as x → 0 we obtain the
asymptotic behaviour of g(x) for x → 0

g(x) ∼ 23/2 π

x7/4
e−π/

√
x. (45)

11
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This is plotted in figure 4 and agrees very well with the simulations. Turning now to the
limit x → 1, we cannot rely on symmetry arguments as was the case for the excursion, so we
substitute y = z/

√
1 − x into (41) to give

g(x) = 4√
π(1 − x)3/4

∫ ∞

0
z1/2

{ ∞∑
n=1

(−1)n+1n2 e−n2xz/
√

1−x

} { ∞∑
m=0

e−4(m+1/2)2
√

1−xz

}
dz.

(46)

Considering the second summation in (46) first, we can manipulate the fundamental theta
function identity (36) to show that in the limit x → 1

∞∑
m=0

e−4(m+1/2)2
√

1−xz ∼
√

π

4

(
1

1 − x

)1/4 1

z1/2
. (47)

For the first summation in (46) one has to be careful; it turns out that all the terms in it
contribute to the integral to the same order as x → 1. Thus one has that

g(x) ∼ 1

(1 − x)

∫ ∞

0

∞∑
n=1

(−1)n+1n2 e−n2z/
√

1−x dz = 1√
1 − x

∞∑
n=1

(−1)n+1. (48)

The summation requires proper regularization for its correct interpretation, and gives
∞∑

n=1

(−1)n+1 = lim
α→−1

∞∑
n=1

αn+1 = lim
α→−1

α2

1 − α
= 1

2
. (49)

Thus the asymptotic behaviour of g(x) as x → 1 turns out to be very simple

g(x) ∼ 1

2
√

1 − x
. (50)

Again this accords well with the simulations, as shown in figure 4. The square root divergence is
the same, except for the pre-factor, as that found for the case of unconstrained Brownian motion,
as discussed in the introduction. One can understand why this might be at a qualitative level
quite easily; for the unconstrained Brownian motion the dominant sample paths contributing
to the x → 1 behaviour are those which are largely positive throughout their journey and
hence resemble meanders.

For completeness, we have also calculated the first two moments of g(x) explicitly using
(25), with the result that,

〈x〉 = π2 − 4

8
= 0.733 70 . . . , 〈x2〉 = 19π2 − 60

216
= 0.590 38 . . . . (51)

From the simulation results we obtain the numerical estimates 〈x〉 ≈ 0.733 . . . and
〈x2〉 ≈ 0.590 . . . , which again are fully consistent.

For the reflected Brownian bridge, one can follow similar procedures. In figure 5 we show
a plot of the theoretical function given by (31). One notes that the function is almost constant
except near x = 0 and x = 1, and it is worth comparing this with the density profile for the
ordinary Brownian bridge which is constant everywhere (as discussed in the introduction).
Through the use of additional Jacobi theta function identities one can show from (31) that as
x → 0,

h(x) ∼ π

x5/4
e−π/2

√
x (52)

with the behaviour as x → 1 given by (52) with the replacement x → 1−x, due to symmetry.
We omit the details, since the derivation of h(x) presented in the previous section serves
primarily to make a connection with what follows.

12
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Figure 5. The theoretical curve for the probability density function h(x) for the reflected Brownian
bridge.

4. An alternative derivation via ‘agreement formulae’

The results derived above for the joint probability density P(M, tm) for the excursion (8),
meander (19) and reflected bridge (28) have a particular mathematical structure which can be
understood from a different perspective. In this section we show, in outline form only, that these
results are manifestations of probabilistic laws associated with three random variables which
have previously been studied in the Brownian motion literature; see [11] and, in particular,
[23–25] and references therein. Such work builds upon the initial path decomposition work
of Williams [26], which in turn provides another interpretation of the findings presented in
[12] for the maximum of a Brownian motion up to its first-passage time, and upon the results
presented in [27]. By such means one can provide an alternative, although less physically
intuitive, method of derivation of the main results in this paper. First consider three variables
S, T and C, which are characterized by the Laplace transform of their respective probability
densities PS(u), PT (u) and PC(u) [25, 28]

E[e−λS] =
√

2λ

sinh(
√

2λ)
= 2

∞∑
n=1

(−1)n+1 n2π2

n2π2 + 2λ
(53)

E[e−λT ] = tanh(
√

2λ)√
2λ

= 2
∞∑

n=0

1(
n + 1

2

)2
π2 + 2λ

(54)

E[e−λC] = 1

cosh(
√

2λ)
= 2

∞∑
n=0

(−1)n

(
n + 1

2

)
π(

n + 1
2

)2
π2 + 2λ

(55)

where E[e−λS] ≡ ∫ ∞
0 PS(u) e−λu du, etc and the series expansions on the right-hand-side of

(53), (54) and (55) are well-known identities [29]. From these identities it follows that the
probability densities can be written as

PS(u) = π2
∞∑

n=1

(−1)n+1n2 e− n2π2

2 u (56)

13
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PT (u) =
∞∑

n=0

e− (n+1/2)2π2

2 u (57)

PC(u) = π

∞∑
n=0

(−1)n
(
n + 1

2

)
e− (n+1/2)2π2

2 u. (58)

With this preamble, the structure of (8), (19) and (28) can be deduced by considering certain
so-called ‘agreement formulae’ [23–25]. These are identities in law between two-dimensional
random variables which relate to various fundamental processes defined in the interval [0, 1]
and which are valid for an arbitrary function f

E[f (M2, tm)] =
√

π

2
E

[
f

(
1

S + S ′ ,
S

S + S ′

) √
S + S ′

]
Excursion (59)

E[f (M2, tm)] =
√

π

8
E

⎡
⎣f

(
1

S + 1
4T

,
S

S + 1
4T

)
1√

S + 1
4T

⎤
⎦ Meander (60)

E[f (M2, tm)] =
√

π

2
E

[
f

(
1

C + C ′ ,
C

C + C ′

)
1√

C + C ′

]
Reflected bridge. (61)

In these formulae, the variables S, T and C are the random variables described above with
probability densities given by (56), (57) and (58) respectively, whilst M and tm have the same
meaning (in relation to the named process) as they have had throughout the paper. All three
results, namely (59), (60) and (61), are of the same generic form

E[f (M2, tm)] = αE

[
f

(
1

U + V
,

U

U + V

)
(U + V )µ

]
(62)

where α and µ are chosen accordingly and, crucially, on the right-hand-side the random
variables U and V are independent. The first (59) and third (61) of these results are particular
cases of a Bessel bridge process of dimension d = 2(1 + µ) represented in terms of two
independent Bessel processes considered up to their first hitting times of 1, and placed ‘back-
to-back’ [24, 25]; see [11] for further references. The second result (60) is not precisely found
in the literature, but may be obtained as a consequence of (61) (the details will be presented
in another publication). For now, if we denote the probability density of U by h(u) and the
probability density of V by k(v), one can use (62) to obtain a relationship between P(M, tm),
the joint probability density of (M, tm), and the pair (h, k). Again we skip the details, but in
summary one can show that (62) implies that the function P(∗, ∗) must satisfy

1

2α

1

(u + v)µ+5/2
P

(
1√

u + v
,

u

u + v

)
= h(u)k(v). (63)

Letting u = tm/M2 and v = (1 − tm)/M2, and then exploiting the scaling properties of the
processes to consider the general interval [0, t] rather than just the interval [0, 1], it follows
that the joint probability densities P(M, tm) for the excursion, meander and reflected bridge
are all of the form,

P(M, tm) = 2α
tµ+1

M2µ+5
h

(
tm

M2

)
k

(
t − tm

M2

)
. (64)

With reference to (59), (60) and (61), it therefore follows that

P(M, tm) =
√

2π
t3/2

M6
PS

(
tm

M2

)
× PS

(
t − tm

M2

)
Excursion (65)
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P(M, tm) =
√

π

2

t1/2

M4
PS

(
tm

M2

)
× 4PT

(
4(t − tm)

M2

)
Meander (66)

P(M, tm) =
√

2π
t1/2

M4
PC

(
tm

M2

)
× PC

(
t − tm

M2

)
Reflected bridge. (67)

One may easily check using (56), (57) and (58) that (65), (66) and (67) reproduce in full the
earlier results derived using the path-integral method. An expanded version of the discussion
in this section will be given in a subsequent publication.

5. Conclusions

We have succeeded in deriving expressions for the probability density P(tm) for the time
to reach maximum for a Brownian excursion (14), a Brownian meander (26) and a reflected
Brownian bridge (31). This has been achieved first by using a path-integral technique, suitably
adapted to each case in turn, with the key feature of introducing appropriate cut-offs which
are then allowed to tend to zero. The derivation is reasonably transparent and, of course, can
be adapted to give comparatively simple derivations of the ‘arcsine law’ and the ‘uniform law’
mentioned in the introduction. Indeed, this was one of the earliest applications of the Feynman–
Kac formula. In passing, we have also derived in each case an expression for the probability
density P(M) associated with the distribution of the maximum. The representations for
P(M) thus obtained look quite different to the standard representations found in the literature
but we have been able to prove their equivalence (see the appendix). By considering the
moments, therefore, this leads to new, non-trivial identities (such as (12) and (23)) which we
have verified numerically to high precision. For the excursion and meander, we have also
analysed the moments and asymptotic limits of P(tm) in some detail and demonstrated that the
theoretical results are in complete accord with numerical simulations. Finally, the ‘agreement
formulae’ (59), (60) and (61) provide an alternative route to the derivation of the main results.
At a fundamental level, this points to fascinating and deep connections with other problems
and is a promising avenue for further study.

Appendix. Establishing the equivalence of certain probability densities

The expression for the probability density P(M) for the maximum of a Brownian excursion
obtained using the path-integral method, (9), looks quite different to the conventional
expression, (11). Here we establish the equivalence. After simplifying both (9) and (11)
this is tantamount to having to prove that

2
∞∑

m,n=1

(−1)m+n m2n2

m2 − n2

[
e−n2x − e−m2x

] ?= −3
∞∑

n=1

n2 e−n2x + 2x

∞∑
n=1

n4 e−n2x. (A.1)

It is expedient (temporarily) to separate out the m = n term on the left-hand-side (which
is evaluated by a limiting procedure) since it exactly cancels the second term on the right-
hand-side. By further integrating both sides with respect to x this means that (A.1) reduces
to

2
∞∑

m,n=1
m�=n

(−1)m+n

m2 − n2

[
n2 e−m2x − m2 e−n2x

] ?= 3
∞∑

n=1

e−n2x. (A.2)
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Next we take the Laplace transform of both sides of (A.2) with respect to x to give

−2
∞∑

m,n=1
m�=n

(−1)m+n

[
(m2 + n2 + s)

(m2 + s)(n2 + s)

]
?= 3

∞∑
n=1

1

n2 + s
. (A.3)

It is now helpful to ‘add back’ the m = n term on the left-hand-side and to the right-hand-side
also. After some simple algebra (A.3) then reduces to

2
∞∑

m,n=1

(−1)m+n

[
(m2 + n2 + s)

(m2 + s)(n2 + s)

]
?=

∞∑
n=1

1

n2 + s
− 2s

∞∑
n=1

1

(n2 + s)2
. (A.4)

One can further simplify the left-hand-side by writing

(m2 + n2 + s)

(m2 + s)(n2 + s)
≡ 1

(n2 + s)
+

1

(m2 + s)
− s

(m2 + s)(n2 + s)
(A.5)

whereupon the overall task condenses down to demonstrating that

−2
∞∑

n=1

(−1)n

n2 + s
− 2s

( ∞∑
n=1

(−1)n

n2 + s

)2
?=

∞∑
n=1

1

n2 + s
− 2s

∞∑
n=1

1

(n2 + s)2
. (A.6)

The remaining steps needed to establish that (A.6) is a rigorous equality simply require one
to use the identities [29]

∞∑
n=1

1

n2 + s
= π

2
√

s
coth(π

√
s) − 1

2s
(A.7)

∞∑
n=1

(−1)n

n2 + s
= π

2
√

s
cosech(π

√
s) − 1

2s
(A.8)

∞∑
n=1

1

(n2 + s)2
= − 1

2s2
+

π

4s3/2
coth(π

√
s) +

π2

4s
cosech2(π

√
s) (A.9)

where (A.9) can be deduced from (A.7) by differentiating both sides with respect to s. It is
now elementary to show that the left-hand-side and the right-hand-side of (A.6) are equal.
It follows that since the Laplace transforms of (9) and (11) are equal, then the functions
themselves are equal, and the proof is complete.

Similarly for the meander, the expression for the probability density of the maximum
obtained using the path-integral method, (20), looks quite different to the conventional
expression, (21). To establish the equivalence we proceed in the same manner as above.
First, it is a simple matter to reduce the task to one of proving that

∞∑
m,n=1
m�=n

[(−1)m+n − (−1)n]
n2

m2 − n2

[
e−n2x − e−m2x

] ?= −
∞∑

n=0

e−(2n+1)2x. (A.10)

Again we take Laplace transforms with respect to x so as to reduce (A.10) to

∞∑
m,n=1
m�=n

[(−1)m+n − (−1)n]
n2

(n2 + s)(m2 + s)

?= −
∞∑

n=0

1

(2n + 1)2 + s
. (A.11)
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By ‘adding back’ the m = n term one can then reduce (A.11) to
∞∑

m,n=1

[(−1)m+n − (−1)n]
n2

(n2 + s)(m2 + s)

?=
∞∑

n=0

1

(2n + 1)2 + s
− 2s

∞∑
n=0

1

((2n + 1)2 + s)2
.

(A.12)

Further manipulations of the left-hand-side of (A.12) yield additional simplifications until
finally the task is to establish the following;{ ∞∑

n=1

(−1)n

n2 + s

} { ∞∑
n=0

1

(2n + 1)2 + s

}
?= −

∞∑
n=0

1

((2n + 1)2 + s)2
. (A.13)

This is easily done using the results (A.7) and (A.8). Thus by subtracting (A.8) from (A.7)
one obtains

∞∑
n=0

1

(2n + 1)2 + s
= π

4
√

s
[coth(π

√
s) − cosech(π

√
s)] = π

4
√

s
tanh

(
π

√
s

2

)
. (A.14)

By further differentiating (A.14) with respect to s one obtains
∞∑

n=0

1

((2n + 1)2 + s)2
= π

8s3/2
[coth(π

√
s) − cosech(π

√
s)]

+
π2

8s
cosech2(π

√
s)[1 − cosh(π

√
s)]. (A.15)

The proof then follows by direct substitution.
Finally, for the reflected bridge, to establish the equivalence between (29) and (30) one

can follow the above procedure, which requires one to show that

2
∞∑

m,n=0
m�=n

(−1)m+n (2m + 1)(2n + 1)

((2m + 1)2 + s)((2n + 1)2 + s)

?= −
∞∑

n=0

1

(2n + 1)2 + s
(A.16)

which is the same as showing that

2

[ ∞∑
n=0

(−1)n
(2n + 1)

(2n + 1)2 + s

]2
?= −

∞∑
n=0

1

(2n + 1)2 + s
+ 2

∞∑
n=0

(2n + 1)2

((2n + 1)2 + s)2
. (A.17)

The right-hand-side of this expression may be rewritten using (A.14) and (A.15). The left-
hand-side may then be shown to be equivalent using the result [29]

∞∑
n=0

(−1)n
(2n + 1)

(2n + 1)2 + s
= π

4
sech

(
π

√
s

2

)
. (A.18)

References

[1] Yor M 2001 Exponential Functionals of Brownian Motion and Related Processes (Berlin: Springer)
[2] Flajolet P, Poblete P and Viola A 1998 Algorithmica 22 490
[3] Kearney M J 2004 J. Phys. A: Math. Gen. 37 8421
[4] Majumdar S N and Comtet A 2004 Phys. Rev. Lett. 92 225501
[5] Burkhardt T W, Gyorgyi G, Moloney N R and Racz Z 2007 Phys. Rev. E 76 041119
[6] Majumdar S N and Comtet A 2005 J. Stat. Phys. 119 777
[7] Majumdar S N 2005 Curr. Sci. 89 2076 Preprint cond-mat/0510064
[8] Janson S 2007 Probab. Surv. 4 80

17

http://dx.doi.org/10.1007/PL00009236
http://dx.doi.org/10.1088/0305-4470/37/35/002
http://dx.doi.org/10.1103/PhysRevLett.92.225501
http://dx.doi.org/10.1103/PhysRevE.76.041119
http://dx.doi.org/10.1007/s10955-005-3022-4
http://www.arxiv.org/abs/cond-mat/0510064


J. Phys. A: Math. Theor. 41 (2008) 365005 S N Majumdar et al
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